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Abstract

A mathematic model based on the theory of interacting continua is developed to describe the complex liquid–solid

two-phase flow with phase-change particles as encountered in non-thermal equilibrium melting of granular packed bed

subject to horizontal, forced convection. The model is solved numerically using the SIMPLE method, in which the

pressure correction based on two-phase mixture continuity equation is implemented. Conservation equations are solved

in the entire computational domain including both the liquid–solid region and liquid-only region. It is ensured that the

global mass, momentum, and energy of two phases are conserved. The local volume-averaged solid velocity and solid

volume fractions are predicted as variables so that the moving and repacking of solid particles can be simulated. This is

a step forward from the results published in the open literature where the assumptions of zero-relative motion of solid

particles and constant porosity or the constant volume are often used. In addition, the model provides the detailed

information about the motion of two phases and phase-change characteristics. Within the uncertainty, the simulation

results agree reasonably with the available experimental data presented in Part I of this study [1].

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The melting phenomena of dispersed or packed solid

particles in a fluid has been of interest in recent years

since the understanding of the process is very important

for the safety of space applications and the need for an

increased number of applications in material processing.

Kearns and Plumb [2] studied experimentally the contact

melting of a packed bed. Plumb [3] presented a numer-

ical analysis of convective melting of packed beds. In his

analysis, thermal non-equilibrium is considered, but the

granular motion is neglected. The very limited motion of

the particles was allowed in a later work [4]. They

adopted the constant porosity model and the constant
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volume model to prescribe the motion process of the

packed bed. Sabau and Tao [5] proposed a model to

predict the melting characteristics during one- and two-

dimensional convective melting processes for a packed

bed. Jiang et al. [6] developed a numerical modeling of

two-dimensional convective melting of granular packed

beds based on Sabau and Tao�s work [5]. They divided

the entire computational domain into two sub-domains,

the pure fluid and the melting packed bed. The single-

phase model and two-phase model was used for two sub-

domains, respectively.

In the present paper, we focus on the development of

a three-dimensional numerical technique that allows the

simulation of the forced convective melting of a packed

bed subject to a horizontal fluid flow of the same species.

To the best of our knowledge, this is the first numerical

study that addresses this issue.

We choose a finite-difference scheme based on the

SIMPLE method [7] to simulate the complex liquid–

solid two-phase flow with phase change as encountered
ed.

mail to: taoy@fiu.edu


Nomenclature

a coefficient in the discretization equation

cp specific heat at constant pressure [J/(kgK)]

D virtual mass coefficient

dp particle diameter [m]

G particle–particle interaction modulus [Pa]

g gravitational acceleration vector [m/s2]

h volumetric heat transfer coefficient [W/

(m3 K)]

hls latent heat for fusion [J/kg]

hp heat transfer coefficient [W/(m2 K)]

k thermal conductivity [W/(mK)]

M mass of packed bed [kg]

_mm mass generation rate [kg/(m3 s)]

Nup Nusselt number, hpdp=kl
Pr Prandtl number

p pressure [Pa]

Rep Reynolds number, eqljvl � vsjdp=ll

S general source term

T temperature [�C]
Tm melting temperature [�C]
t time [s]

u x-direction velocity [m/s]

v velocity vector [m/s]

v y-direction velocity [m/s]

w z-direction velocity [m/s]

x, y, z coordinates

Greek symbols

b friction coefficient [kg/(m3 s)]

e volume fraction

l viscosity [Pa s]

q density [kg/m3]

u general dependent variable

Subscripts

eff effective

I interface

l liquid

s solid

a phase

Superscripts

0 old value (at time t) of the variable

* previous-iteration value of a variable
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in the convective melting process for a packed bed. It is

because the SIMPLE method has achieved the success in

the numerical simulation of single-phase fluid flow and

heat transfer with relative rigor of clearly defined first-

principles. Another reason is that the method can save

large amount of computer time and storage. The grid

system utilized treats the interface between the liquid–

solid region and liquid-only region as internal grids in-

stead of using boundary-fitted coordinates along the

interface. All of conservation equations are solved in the

entire computational domain, including the liquid–solid

two-phase region and the liquid-only region, to ensure

the global conservation of mass, momentum and energy

of two phases. The motion and volume fraction of solid

phase during a melting process are calculated to simulate

the movement and repacking phenomenon of solid

particles. This approach removes the needs to assume

motionless solid particles and the constant porosity or

the constant volume, as previously done in other studies

[4]. The detailed results such as velocity and temperature

profiles of two phases and phase-change characteristics

can be obtained.

In this study, turbulence is not considered for two

reasons. One is that for the cases studied fluid velocities

are relatively low, and the turbulent-dispersion created

by ‘‘jets’’ and ‘‘wakes’’ in the interstices is not strong

enough to have a significant effect. The other reason is

that because volume-averaged equations are used in the

formulation, the issue of turbulence cannot be treated
explicitly. Therefore, the hydrodynamic model in this

study does not contain turbulence terms.

2. Theoretical model

The model of two-phase flow and heat–mass transfer

with the phase changes is based on the theory of inter-

acting continua [8]. The interfaces between the fluid and

solid particles can be considered as surfaces of discon-

tinuity. Consequently, the balance laws for each phase

are expressed in terms of partial differential equations,

whereas on the interface they are formulated in terms of

jump conditions. In principle, the system of governing

equations with the initial and boundary conditions and

the jump conditions on the interface can be solved nu-

merically. However, the complexity of the geometry of

the interface is for most practical problems sufficiently

complex to render this alternative unfeasible. It is

therefore desirable to simplify the problem by volume

averaging over a representative elementary volume in

the two-phase flow. The both phases are treated as

continuum media. The complex jump conditions on the

interface are transformed to the terms related to the

interaction between the two phases in the averaged

equations, which can be obtained by using the proper

correlations. The local volume-averaged equations of

mass, momentum and energy conservation can be ex-

pressed by the following with their symbols defined in

the nomenclature.
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2.1. Governing equations

Continuity

o

ot
ðelqlÞ þ r � ðelqlvlÞ ¼ _mm; ð1Þ

o

ot
ðesqsÞ þ r � ðesqsvsÞ ¼ � _mm: ð2Þ

Momentum

o

ot
ðelqlvlÞ þ r � ðelqlvlvlÞ

¼ �elrp þr � ½elllðrvl þrvTl Þ� þ elqlg� bðvl � vsÞ

þ ð1� elÞDql

d

dt
ðvl � vsÞ þ _mmvl; ð3Þ

o

ot
ðesqsvsÞ þ r � ðesqsvsvsÞ

¼ �esrp � Grel þr � ½eslsðrvs þrvTs Þ� þ esqsg

þ bðvl � vsÞ � ð1� elÞDql

d

dt
ðvl � vsÞ � _mmvs: ð4Þ

Thermal energy

o

ot
ðelqlilÞþr� ðelqlilvlÞ¼r� ðelkeff ;lrTlÞ�hðTl�TsÞþ _mmiI–l;

ð5Þ

o

ot
ðesqsisÞ þ r � ðesqsisvsÞ

¼ r � ðeskeff ;srTsÞ þ hðTl � TsÞ � _mmiI–s: ð6Þ

For a liquid–solid two-phase system, the relationship

between liquid and solid volume fraction is el þ es ¼ 1.

Therefore, only one of liquid and solid volume fractions

is an independent variable. In the thermal energy

equations, the pressure terms, the dissipation function

terms and the terms of Joule�s heating and thermal

radiation have been neglected.

For solving the governing equations, the basic vari-

ables must be specified. In this study, the basic variables

have been chosen as the liquid volume fraction, el, the
pressure, p, three components of liquid velocity vector,

ul, vl, wl, three components of solid phase velocity vec-

tor, us, vs, ws, the liquid phase enthalpy, il, and the solid

phase enthalpy, is. For the closure of the set of gov-

erning equations, specification of the constitutive equa-

tions is required. This means that all other variables in

the governing equations must be specified in terms of the

basic variables.

In this study, the simulation case involves a granular

packed bed that is subject to a fluid flow with a tem-

perature higher than the phase-change temperature of

the particle material. Therefore, the particles in the

packed bed are heated and melt when their surface

temperature reaches the phase-change temperature. The

melting of solid phase causes the mass transport from

solid phase to liquid phase. This phenomenon is repre-
sented as a source term on the right hand side of two-

phase continuity equations. The momentum and energy

transports between two phases caused by the mass

transport are presented by the corresponding terms in

momentum and energy equations for the liquid and

solid, respectively. The model adopted in the present

study considers that both phases are continuous and

fully interpenetrating. The difference between the tem-

peratures at the surface and at the interior of the particle

is not considered for the reason of reducing a significant

portion of computing time.
2.2. Constitutive equations

The melting rate of solid phase per unit volume, the

source term in the liquid continuity equation, can be

calculated using the energy balance relation, which re-

quires that the latent heat of melting be related to heat

transfer from the liquid to the solid phase, i.e.,

_mm ¼ 0; Ts < Tm;
hðTl�TsÞ

hls
; Ts ¼ Tm:

�
ð7Þ

The friction coefficient b in Eqs. (3) and (4) is cal-

culated in two ranges of liquid phase volume fraction. If

el < 0:8, the friction coefficient b is obtained from Ergun

equation as follows [9]:

b ¼ 150
ð1� elÞ2ll

eld2
p

þ 1:75
ð1� elÞql

dp
jvl � vsj: ð8Þ

If el P 0:8, the friction coefficient b becomes

b ¼ 3

4
Cd

elð1� elÞ
dp

qljvl � vsje�2:65
l : ð9Þ

In this formula, e�2:65
l shows the effect due to the presence

of other particles in the fluid and acts as a correction

to the usual Stokes law for free fall of a single particle [9].

Cd is related to the particle Reynolds number [10]

Cd ¼
24
Rep

ð1þ 0:15Re0:687p Þ; Rep < 1000;

0:44; Rep P 1000;

�
ð10Þ

where

Rep ¼
elqljvl � vsjdp

ll

: ð11Þ

In Eqs. (3) and (4), D is the virtual mass coefficient. For

dispersed spherical particles, D ¼ 0:5 [11].

The following formula [12] is applied to the particle–

particle interaction modulus G in Eq. (4):

G ¼ �1:0e100ð0:45�elÞ: ð12Þ

The viscosity of solid phase ls has to be obtained since

the solid phase is considered as a continuum in the

present model. In fact, due to the lack of experimental

study the data of viscosity ls have not been available for



5034 Y.L. Hao, Y.-X. Tao / International Journal of Heat and Mass Transfer 46 (2003) 5031–5044
the system of liquid–solid two-phase flow with melting

solid. As a first-degree approximation, the best simula-

tion using an indirect comparison with melting rate of

experimental data is obtained in this study when the

value of ls ¼ 0:01 Pa s is chosen.

The temperatures of the liquid and solid phases, Tl
and Ts, on the right sides in Eqs. (5) and (6) can be

calculated from the enthalpy formulations as following,

il ¼ cp;lTl þ ½ðcp;s � cp;lÞTm þ hls�; ð13Þ

is ¼ cp;sTs: ð14Þ

The last terms on the right side in Eqs. (5) and (6)

represent the enthalpy transfer between the two phases

because of phase change. Since the melting from solid

phase enters the liquid phase at the melting temperature,

the enthalpy transfer terms in Eqs. (5) and (6) can be

expressed as, respectively,

_mmiI–l ¼ _mmðcp;sTm þ hlsÞ; ð15Þ

_mmiI–s ¼ _mmcp;sTm: ð16Þ

The effective thermal conductivities in Eqs. (5) and (6)

are calculated using the approximate model in [13]:

keff ;l ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� el

p �
kl=el; ð17Þ

keff ;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� el

p

1� el
½gAþ ð1� gÞZ�kl; ð18Þ

where

Z ¼ 2ðB� B=AÞ
ð1� B=AÞ3

ln
A
B

� �
� 2ðB� 1Þ
ð1� B=AÞ2

� Bþ 1

1� B=A
;

ð19Þ
and

B ¼ 1:25ð1=el � 1Þ10=9: ð20Þ

For spherical particles, A ¼ ks=kl and g ¼ 7:26� 10�3.

The volumetric heat transfer coefficient h in Eqs. (5)

and (6) is obtained from

h ¼ 6ð1� elÞ
dp

hp: ð21Þ

In this formula, the heat transfer coefficient hp can be

estimated according to [14]:

Nup ¼
hpdp
kl

¼ 2þ 1:1Re0:6p Pr1=3: ð22Þ

The diameter of particle can be estimated based on the

relation that the loss of mass particle in the interval Dt
equals the melting mass of particle in the same interval

Dt. We assume particles retain their sphericity in the

melting process, therefore,

dp ¼ d0
p 1

 
� _mmDt

esqs

!1=3

: ð23Þ
3. Numerical method

The set of 10 non-linear, coupled, partial differential

equations presented in Eqs. (1)–(6), supplemented with

the constitutive equations and the initial and boundary

conditions, cannot be solved analytically. Therefore, a

numerical method must be used to obtain an approxi-

mate solution. In the present study, we developed a

numerical method based on the SIMPLE algorithm [7]

to solve the above conservation equations in three-

dimensional Cartesian coordinate system.

Eqs. (1)–(6), can be written as a general differential

equation:

o

ot
ðeaqauaÞ þ

o

oxj
ðeaqava;juaÞ ¼

o

oxj
eaCu

oua

oxj

� �
þ Su:

ð24Þ

For the basic variable, an appropriate value is given to the

diffusion coefficient Cu and the source term Su in Table 1.

The source term that is the non-linear function of variable

ua has to be linearized as Su ¼ SC þ SPua, because the

differential equation has to be discretized as the linear

algebraic equation in order to be solved by the techniques

for linear algebraic equations [7]. The linearization

treatments of the source terms are given in Table 1.

We utilize a staggered grid system. The grid point is

placed at the geometric center of the control volume.

Field variables such as p, q, e and i are grid-centered

quantities, whereas velocities are located on the sides of

grids, as shown in Fig. 1. Integer indices i, j and k count

control-volume centers in the x-, y-, and z-directions,
respectively, whereas half integer indices refer to the

edge positions of control volume.
3.1. Discretized equations

We integrated the general differential equation over

the control volume shown in Fig. 1. The fully implicit

scheme was adopted for the time coordinate. The power-

law scheme was adopted for the convective and diffusive

terms. The above-mentioned set of governing equations

written in the general differential equation form is dis-

cretized as following general form after rearrangement.

aui;j;k ¼ aiþ1uiþ1 þ ai�1ui�1 þ ajþ1ujþ1 þ aj�1uj�1

þ akþ1ukþ1 þ ak�1uk�1 þ b; ð25Þ

where

aiþ1 ¼
ðeCÞiþ1=2

xiþ1�xi
0; 1

 2
4
2
4

8<
: �0:1

xiþ1�xi
ðeCÞiþ1=2=ðequÞiþ1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðequÞiþ1=2��

9=
;DyDz; ð26aÞ



Table 1

Relationship between the governing equations and the general differential equation

u C Source-term linearization S ¼ SC þ SPu

SC SP

el 0 _mm 0

ul elll

o

ox
elll

oul
ox

� �
þ o

oy
elll

ovl
ox

� �
þ o

oz
elll

owl

ox

� �
� el

op
ox

þ elqlgx þ bxus þ ð1� elÞDql

d

dt
ðul � usÞ þ _mm; 0½ �½ �ul

�bx � ½½� _mm; 0��

vl elll

o

ox
elll

oul
oy

� �
þ o

oy
elll

ovl
oy

� �
þ o

oz
elll

owl

oy

� �
� el

op
oy

þ elqlgy

þ byvs þ ð1� elÞDql

d

dt
ðvl � vsÞ þ _mm; 0½ �½ �vl

�by � ½½� _mm; 0��

wl elll

o

ox
elll

oul
oz

� �
þ o

oy
elll

ovl
oz

� �
þ o

oz
elll

owl

oz

� �
� el

op
oz

þ elqlgz

þ bzws þ ð1� elÞDql

d

dt
ðwl � wsÞ þ _mm; 0½ �½ �wl

�bz � ½½� _mm; 0��

il
elkeff;l
cp;l

h
cp;l

is þ
h
cp;s

½ðcp;s � cp;lÞTm þ hls� þ _mmðcp;sTm þ hlsÞ � h
cp;l

us esls

o

ox
esls

ous
ox

� �
þ o

oy
esls

ovs
ox

� �
þ o

oz
esls

ows

ox

� �
� es

op
ox

þ esqsgx

þ bxul � ð1� elÞDql

d

dt
ðul � usÞ � G

oel
ox

þ � _mm; 0½ �½ �us

�bx � ½½ _mm; 0��

vs esls

o

ox
esls

ous
oy

� �
þ o

oy
esls

ovs
oy

� �
þ o

oz
esls

ows

oy

� �
� es

op
oy

þ esqsgy

þ byvl � ð1� elÞDql

d

dt
ðvl � vsÞ � G

oel
oy

þ � _mm; 0½ �½ �vs

�by � ½½ _mm; 0��

ws esls

o

ox
esls

ous
oz

� �
þ o

oy
esls

ovs
oz

� �
þ o

oz
esls

ows

oz

� �
� es

op
oz

þ esqsgz

þ bzwl � ð1� elÞDql

d

dt
ðwl � wsÞ � G

oel
oz

þ � _mm; 0½ �½ �ws

�bz � ½½ _mm; 0��

is
eskeff;s
cp;s

h
cp;l

½il � ðcp;s � cp;lÞTm � hls� � _mmcp;sTm � h
cp;s

x 

y 
z

i, j, k 
2
1+i  2

1−i  

2
1+k  

2
1−k  

u u 
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v 

2
1+j  

2
1−j

v 

Fig. 1. Layout for a computational grid.
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ai�1¼
ðeCÞi�1=2

xi�xi�1

0; 1

 2
4
2
4

8<
: �0:1

xi�xi�1

ðeCÞi�1=2=ðequÞi�1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðequÞi�1=2��

9=
;DyDz; ð26bÞ

ajþ1 ¼
ðeCÞjþ1=2

yjþ1� yj
0; 1

 2
4
2
4

8<
: �0:1

yjþ1� yj
ðeCÞjþ1=2=ðeqvÞjþ1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðeqvÞjþ1=2��

9=
;DzDx; ð26cÞ

aj�1¼
ðeCÞj�1=2

yj�yj�1

0; 1

 2
4
2
4

8<
: �0:1

yj�yj�1

ðeCÞj�1=2=ðeqvÞj�1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðeqvÞj�1=2��

9=
;DzDx; ð26dÞ
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akþ1¼
ðeCÞkþ1=2

zkþ1�zk
0; 1

 2
4
2
4

8<
: �0:1

zkþ1�zk
ðeCÞkþ1=2=ðeqwÞkþ1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðeqwÞkþ1=2��

9=
;DxDy; ð26eÞ

ak�1¼
ðeCÞk�1=2

zk�zk�1

0; 1

 2
4
2
4

8<
: �0:1

zk�zk�1

ðeCÞk�1=2=ðeqwÞk�1=2

�����
�����
!5
3
5
3
5

þ½½0;�ðeqwÞk�1=2��

9=
;DxDy; ð26fÞ

a ¼ aiþ1 þ ai�1 þ ajþ1 þ aj�1 þ akþ1 þ ak�1

þ ðq0=Dt � SPÞDxDyDz; ð26gÞ

b ¼ ðq0u0=Dt þ SCÞDxDyDz: ð26hÞ

We omitted the subscripts denoting phases and variables

in above equations and formulas for simplicity. The

discretization equations obtained in this manner present

the conservation principles for u for the finite control

volume. The resulting solution would imply that the

integral conservation of mass, momentum, and energy is

completely satisfied over any group of control volumes

and, most importantly, over the whole computational

domain. This is true even for a coarse-grid solution,

which is very helpful during debugging of the computer

code.
3.2. Corrections to velocities and pressure

To utilize the computing resource more efficiently, we

employ the iterative method, instead of a direct, simul-

taneous solution scheme for all governing equations, in

order to yield the volume fraction, velocity components,

pressure, and enthalpies. We sequentially solve the

above discretized governing equations corresponding to

all basic variables except pressure. To develop the

method to solve for pressure, we first tried to develop the

continuity equation of solid phase into an equation of

pressure correction since the continuity equation of

liquid phase has been used to obtain the volume fraction

of liquid phase. It was found that this method was not

successful because the result was very unstable and un-

realistic. This may result from the fact that the driven-

phase flow field (solid) at the intermediate stage of the

iterative cycle is used to obtain the pressure of the

driving-phase flow field (liquid). The effect of enthalpy

field at the intermediate stage of the iterative cycle was

introduced by the source term of solid phase continuity

equation. It should be more reasonable to construct the

pressure correction equation based on the mixture con-

tinuity equation. This approach not only introduces the

effect of the driving-phase flow field to the calculation of
the pressure correction, but also prevents the calculation

of the source term of phase change based on the veloc-

ities and enthalpies before the computational results

converge. It, therefore, improves the stability and con-

vergence of numerical results. The mixture continuity

equation can be obtained by adding Eqs. (1) and (2):

o

ot
½elql þ esqs� þ r � ½elqlvl þ esqsvs� ¼ 0: ð27Þ

The pressure can be written as the guessed pressure

or the previous-iterative value p� plus the pressure cor-

rection p0:

p ¼ p� þ p0: ð28Þ

Similarly, velocities can be written as:

ua ¼ u�a þ u0a; va ¼ v�a þ v0a; wa ¼ w�
a þ w0

a: ð29Þ

We substitute all the velocity components with these

expressions and notice that the values of p�, u�a, v
�
a, and

w�
a are the results of previous iterative cycle in the dis-

cretized equation of each velocity component. The dis-

cretized equation for each velocity correction can be

obtained by omitting the terms containing neighboring

grid velocities and separating the pressure gradient term

from the source term. For example, the correction of

liquid phase velocity component in x-direction, u0l;iþ1=2,

is written as

u0l;iþ1=2 ¼
e
au

� �
l;iþ1=2

ðp0i � p0iþ1ÞDyDz ð30Þ

In this formula, au is the coefficient a in the left side of

the discretied x-momentum equation (see the general

form, Eq. (25)). The subscript l indicates liquid phase.

Therefore, the velocity-correction formula for ul;iþ1=2

is

ul;iþ1=2 ¼ u�l;iþ1=2 þ
e
au

� �
l;iþ1=2

ðp0i � p0iþ1ÞDyDz ð31Þ

The velocity-correction for other velocity components of

two phases can be written in a similar form.

Integrating Eq. (27) over the control-volume and

utilizing the above-defined velocity-correction, we ob-

tain the following discretized equation for the pressure

correction p0 after rearrangement:

app0i;j;k ¼ ap;iþ1p0iþ1 þ ap;i�1p0i�1 þ ap;jþ1p0jþ1

þ ap;j�1p0j�1 þ ap;kþ1p0kþ1 þ ap;k�1p0k�1 þ bp; ð32Þ

where

ap;iþ1 ¼ elql

e
au

� �
l

�
þ esqs

e
au

� �
s

	
iþ1=2

ðDyDzÞ2; ð33aÞ

ap;i�1 ¼ elql

e
au

� �
l

�
þ esqs

e
au

� �
s

	
i�1=2

ðDyDzÞ2; ð33bÞ
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ap;jþ1 ¼ elql

e
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� �
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Fig. 2. Flow chart for solving the problem of coupled liquid–

solid two-phase flow and heat–mass transfer with phase change

in the solid phase.
3.3. Solution method

Up to this point, we have formulated all the equa-

tions needed to obtain the basic variables. All of the

above discretized equations, including that for the

pressure correction, have the same algebraic equation

form as Eq. (25). We can then develop a special sub-

routine to solve the general form algebraic equation

using the iterative method. The solution process for a

different basic variable is different only in calculating the

coefficients and the constant term in the discretized

equation. When the coefficients and constant term are

calculated, the interface values of grid-centered quanti-

ties and the grid-centered values of the velocity com-

ponents are obtained by the interpolation since the

staggered grid is used. The harmonic mean is employed

for the properties such as densities, effective conductiv-

ities and so on. The arithmetic mean is employed for the

other quantities. The ADI (alternating-direction im-

plicit) method is used to solve the algebraic equations.

The volume fraction of liquid calculated based on the

liquid continuity equation may not agree with the total

mass conservation before iterative cycle converges. It

may cause the unstableness or divergence of the iterative

process. Therefore, we employ the total mass conserva-

tion of the entire computational field to obtain the vol-

ume fraction correction of liquid in an iterative cycle as

follows,

e0l ¼
P

½ð1� e�l Þqs þ _mmDt � ð1� e0l Þq0
s �DxDyDzP

qsDxDyDz
: ð34Þ

From physical phenomena in two-phase flow with water

and ice particles as a pair, it is known that the ice par-
ticles float upward due to the buoyancy as well as moves

downstream due to the inertia and other forces exerted

to ice particles by water. The volume fraction of water

should be 1 and does not need to be corrected in the area



Fig. 3. Computational domain with specified boundary and

initial conditions.
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where there is no ice at the end of last time step. In Eq.

(34), therefore,
P

means summation in the region where

the ice exists at the end of last time step.

The change in the ice sphere diameter is updated at

the end of iterative cycle for each time step. When the

iterative cycle has converged and the iterative volume

fractions, velocities and temperatures have been es-

tablished, the diameter distribution of ice sphere in the

computational field can be calculated from Eq. (23).

We calculate the equations in the entire computa-

tional domain unlike previous studies where the com-

putational domain is divided as two domains, pure

liquid domain and liquid–solid domain. Only liquid

phase conservation equations were solved in the liquid

domain and two-phase conservation equations were

solved in the liquid–solid domain in those studies. The

present treatment avoids the complexity in the interface

conditions as shown in the earlier studies, although it

requires additional computational time for solving the

solid equations in liquid-only region. When the volume

fraction of solid phase equals zero in liquid-only region,

the coefficients in Eq. (25) of solid phase variables be-

come zero. Therefore, values of solid phase variables at

the grid point can be given directly without the iterative

computation. This treatment in the program can save

the part of additional computational time for solving

solid phase equations in liquid-only region without

sacrificing the conservation of mass, momentum and

energy in the entire computational domain. The results

are considered converged when the relative changes in

the variables between two successive iterations are less

than 10�4%.

Development of the field configurations through time

takes place in a sequence of time steps. At each time step

Dt the computation is accomplished in such a way as to

utilize the results developed in the previous time step (or
0
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Fig. 4. Volume fraction of water at t ¼ 24:1 s and x=L ¼ 0:0792, 0

Ts0 ¼ �20 �C.
the initial conditions) for the calculation of new values

of all field variables, and to store these in the computer

in such a way that they can be processed yet again in the

following cycle. Considering the balance between the

computing efficiency and accuracy/stability, we choose

the typical time steps between 0.001 and 0.01 s, where

the small time step corresponds to relatively high ve-

locity (also see the detailed discussion about the results

below).

In Fig. 2, we summarize the general procedure of the

computer code developed in the present study for the

solution of the liquid–solid two-phase flow and heat–

mass transfer with the phase change. The computer code

is written in FORTRAN. All of equations and param-

eters are non-dimensionalized before they are solved.
4. Results for water flow through packed ice bed

We present some preliminary results to demonstrate

our numerical technique. Although in this study we

focus on the convective melting of ice particles in hori-
0.4
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Fig. 5. Interface between the water domain and the water–ice

domain in the convective melting process: (a) t ¼ 13:7 s; (b)

t ¼ 37:9 s; (c) t ¼ 76:6 s: vl0 ¼ 0:05 m/s, Tl0 ¼ 30 �C, es0 ¼ 0:52,

Ts0 ¼ �20 �C.
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zontally flowing water, the present technique can also be

used to simulate the melting process of granular packed

bed of other phase-change material in a fluid flow. The

reason why we use water and ice particles as liquid and

solid phases is mainly that the results can be validated by

the experimental results in [1]. As illustrated in Fig. 3,

the computational region is an open channel section

with a rectangular cross-section. Initially, the full

amount of ice particles with the packed volume equal to

the computational domain at a given initial temperature

is suddenly placed in the horizontally flowing water,

which is assumed fully developed initially in the test

section. The packed bed forms during convective melt-

ing as a result of gravity and horizontal flow with a

downstream perforated plate that stops melting particles

[1].

4.1. Initial and boundary conditions

The initial volume fraction of the particles is assumed

uniform. For the momentum equations, the domain is

surrounded by three impermeable, no-slip rigid walls for

both phases (two vertical walls at sides and one bottom

wall) and by a wall at the exit, which is permeable for the

water and impermeable (no-slip rigid) for the ice phase.

The top boundary condition is a free surface for both

phases. At the entrance, the influx of water with a uni-

form velocity is prescribed. For the thermal energy

equations, the bottom wall, top surface, and sidewalls

are considered as adiabatic surfaces for both phases. At

the entrance, the inlet temperature of water is assumed

uniform. At the exit, the continuity energy outflow

boundary conditions are assumed for both phases.

In order to compare numerical results with experi-

mental results, computations were carried out for a

typical experimental case presented in Part I of this

study [1]. In this case, the width, height and length of the

computational region are 152, 100, and 300 mm, re-

spectively. Water flows at the entrance with the constant

velocity of 0.05 m/s and the constant temperature of

30 �C. The initial temperature of ice particles is )20 �C
and the initial equivalent spherical diameter of 26.2 mm.

The initial volume fraction of water in the section is

uniformly distributed at 0.52. The grid number adopted

in the preliminary computation is 34 in the x-direction,
62 in the y-direction, and 22 in the z-direction, for a total
of 46,376. A fixed time step of Dt ¼ 0:005 s was used.

The computation used about 285.66 h of computational

time on a Sun Blade 1000 workstation with two 750

MHz UltraSPARC III processors and 1 GB memory.

4.2. Liquid volume fraction

Fig. 4 shows the distribution of water volume frac-

tion at t ¼ 24:1 s. The melting ice particles float to the

upper field since the density of ice is less than that of
water under the gravity condition, and are pushed to-

wards downstream. In the figure, the value of the water

volume fraction is very close to unit in the entrance re-

gion (left-lower region). If we defined a value of water

volume fraction, such as 0.97, at which the interface

between the packed ice particles and liquid water is

present, the entire domain can be divided as the packed

bed of ice particles region in the upper and downstream

portions of the domain and the liquid-only region in the

lower and upstream portions. Fig. 5 shows the typical

interfaces at the three time points in the convective
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melting process. The interface clearly shows the varia-

tion of the packed bed thickness as convective melting of

the ice particles in the packed bed continues. The cal-

culated packing pattern of the ice particles in this hori-

zontal flow agree qualitatively well with the

experimental observations presented in Part I [1].

4.3. Velocity and temperature distributions

Fig. 6(a) shows the spatial distribution of the liquid

phase velocity vectors along with the liquid volume
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Fig. 6. (a) Velocity vectors of water, (b) streamlines of water flow and

at t ¼ 24:1 s and x=L ¼ 0:0792, 0.206, 0.333, and 0.459: vl0 ¼ 0:05 m/
fraction distribution. At that particular time, the liquid

near the entrance region flows downwards gradually

because of the flow resistance from the packed bed in the

upper region. As flowing further downstream, water

moves up gradually because the passage for water be-

comes narrower in the lower region due to the thick

packed bed. In the bottom half of the domain towards

downstream a parallel flow pattern exists except near the

vertical side walls where a downward flow is observed

due to the flow mixing with the cold melt discharge.

Because the ice particles tend to pack in upper region,
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Fig. 7. (a) Temperature distribution of water flow, (b) temperature distribution of solid phase, and (c) melting rate of solid phase at

t ¼ 24:1 s and x=L ¼ 0:0792, 0.206, 0.333, and 0.459: vl0 ¼ 0:05 m/s, Tl0 ¼ 30 �C, es0 ¼ 0:52, Ts0 ¼ �20 �C.
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the volume fraction of ice increases, which causes the

cross-sectional area for water passage to decrease in

the packed bed region. Since water is incompressible,

the velocities of water in the upper region are greater

than in the lower region, as shown in Fig. 6(a). The flow
characteristics are also clearly illustrated by the stream-

lines in Fig. 6(b).

In Fig. 6(c), the spatial distribution of the solid phase

velocity vectors is shown overlaying on the liquid vol-

ume fraction distribution for the same condition as in
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Fig. 6(a). The motion of solid phase is driven by the

water flow. Therefore, the velocity vector of solid tends

to follow that of liquid in the packed bed. There are no

particles near the entrance region so that no velocity

vector appears there. The velocity vector approaches

zero at the exit because that the perforated plate stops

the particles.

The temperature distribution of water along the flow

direction can be seen in Fig. 7(a). The temperature of

water decreases gradually towards the downstream with

the low temperature region primarily inside the packed

bed, which is also corresponding to the lowest liquid

volume fractions. Fig. 7(b) shows the temperature dis-

tribution of solid phase. The ice particles pack in the

upper and downstream portions. The water with higher

temperature flows against the packed bed. At that par-

ticular time (t ¼ 24:1 s), the ice particles are being heated
near the interface. A relatively sharp temperature gra-

dient near the bed interface indicates a melting zone that

is kept at the phase-change temperature, while the

temperature inside of packed bed is still below the

phase-change temperature. The distribution of local

melting rate of the solid phase, shown in Fig. 7(c),

clearly supports that observation. This phenomenon is

partly because the initial solid phase temperature is low

(about )20 �C). For an initially warm ice pack (e.g.,

)5 �C), the melting zone has been found to be much

wider (results are not shown here). It should be noted

from Figs. 4–7 that the simulation results are approxi-

mately symmetrical about the vertical center plane, but

clearly shows the influence of the vertical side walls on

the non-uniform distribution of all the variables in the

x�-direction.
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Fig. 8. Comparison of the calculated results (the present study)

and experimental results [1] on the variation of mass of packed

bed with time under different water velocities at inlet: Tl0 ¼ 30

�C, es0 ¼ 0:52, Ts0 ¼ �20 �C, Ms0 ¼ 2 kg.
4.4. Comparison with experimental results

In Fig. 8, the calculated mass of ice particles in the

packed beds from the numerical model is compared

with the measured one. Three experimental cases are

presented using the results in Part I [1]. They are

under different water velocity conditions, vl0 ¼ 0:01,
0.05, and 0.10 m/s, respectively. The comparison

shows that the predicted mass variations with time

agree well with the experimental results, especially in

the first period of melting process. The main reason

for the shown discrepancy is that the correlation for
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Fig. 9. The comparison of bed thickness between the numerical

results and the experimental data: (a) y ¼ 0:15 m; (b) y ¼ 0:24

m; (c) y ¼ 0:33 m.
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the heat transfer coefficient between fluid and parti-

cles, Eq. (22), was developed for the large size particle

without melting. The uncertainty would increases with

the decrease in the particle size during the late period

of melting process. The melting process also strongly

affects the heat transfer characteristics between the

fluid and particle [15,16]. There has been a lack of the

correlation for the local heat transfer coefficient be-

tween fluid and particles with melting covering the

entire melting period.

The comparison between the numerically calculated

and measured packed bed thickness is shown in Fig. 9.

The experimental bed thickness is obtained by measur-

ing the vertical distance from the free surface to the in-

terface according to the visual observation from the side

view. Accordingly, we obtained the thickness by calcu-

lating the vertical distance from the free surface to the

bottom bed interface. This way, we determine the

highest value of the thickness in the x-direction to

compare the measurement data. The results shown in

Fig. 9 indicate that the numerical results agree reason-

ably well with the experimental results.
4.5. Grid-independence exercise

To examine the dependence of the solution on the

grid parameters, computations were performed with

other two different grid numbers of 68� 122� 42 in x-, y-,
and z-directions, respectively, and 18� 32� 12 in x-, y-,
and z-directions. The time step remains at Dt ¼ 0:001 s.

The results show that the difference of results on grid

number of 68� 122� 42 and 34� 62� 22 is negligible.

Therefore, the grid-independent result can be obtained

when the grid numbers are more than 34� 62� 22 in the

present study.
5. Conclusions

A numerical model is developed, based on the theory

of interacting continua, to simulate the complex liquid–

solid two-phase flow for a melting packed bed subject to

a horizontal force convection. The model is solved using

the SIMPLE method, for which the pressure correction

method is developed using the two-phase mixture con-

tinuity equation. The method features the global solu-

tions for conservation equations including both the

liquid–solid region and the liquid-only region. This is to

ensure the global conservation of mass, momentum and

energy of two phases. The motion and volume fraction

of solid phase during melting process are predicted in

addition to the usual prediction of fluid flow field and

phase temperatures. No assumptions of motionless solid

particles and the constant porosity or the constant vol-

ume are used.
The numerical code developed in the present study

has proved to be grid-independent. The computational

results reveal the detail of the flow and melting charac-

teristics in the melting packed bed. The validation of the

model through a case study by experimental results in-

dicates that the model achieves a reasonably good ac-

curacy in simulating both the melting process and the

packing pattern of the granular packed bed. It has been

pointed out that the constitutive equation for the local

heat transfer coefficient is a crucial factor influencing the

accuracy of the model. This study lays a foundation for

comprehensive, parametric study of various coupling

physical effects in convective melting of solid particles. It

can be extended to study both packed and dispersed

particles.
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